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THEORETICAL DETERMINATION OF LIFETIME OF COMPRESSED

PLATES AT ELEVATED TEMPERATURES

By George Herrmann and Hu-Nan Chu

SUMMARY

A method for the theoretical determination of the lifetime of com-

pressed plates at elevated temperatures is presented. In this approach_

linearized equations are used throughout with the assumption that the

plate material is a standard linear solid. The critical time (lifetime)

is determined by reducing the time-dependent behavior to the time-

independent response of purely elastic buckling.

Theoretically predicted lifetimes of 2024-T3 (formerly 24S-T3)

aluminum-alloy plates at 450 ° F are compared with experimental values

obtained in previous work.

INTRODUCTION

With the increase of flight speeds_ it becomes more and more impor-

tant to investigate extensively the behavior of compressed load-carrying

structural components such as columns and plates. At high speeds one

of the effects of aerodynamic heating consists in changing the properties

of many structural materials from elastic to viscoelastic. Accordingly_

numerous papers dealing with the problem of such time-dependent be-

havior_ particularly creep bending and buck_ling_ appeared during the

last decade. A review of these and related _lestions was presented re-

cently by Hoff (ref. I) and Shanley (_ef. 2).

As has been repeatedly observed (refs. i and 2), one of the essential

features of such time-dependent response is the existence of a critical

time at which the structure fails under constant compressive loads. A

variety of viewpoints may be adopted to determine analytically this criti-

cal time. For example, expressions for the deflection of a compressed

element can be found, and the critical time can be defined as the time
at which this deflection becomes infinite. Since in this case the use

of a nonlinear stress-strain relation (or creep law) is required and since

the experimental creep curve for metals is nonlinear_ the use of nonlinear

stress-strain relations possibly may be required in order to determine

analytically any critical time.
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Another approach could consist in assuming an initial imperfection
that would increase in time. The critical time (or lifetime) could then
be defined, still with a linear stress-strain relation, as the time at
which a certain allowable quantity (such as stress, strain 3 or deflection)
is reached.

Still another point of view is adopted in the present study. It is
assumedthat the plate is perfectly flat and that the constant compres-
sive stresses will cause time-dependent decrease of Young's (or shear)
modulus, which in turn is proportional to the flexural rigidity. This
decrease is determined by developing the plate equations on the basis of
stress-strain relations derived from spring-dashpot models. The critical
time is defined as the instant at which the flexural rigidity reaches a
value that would makea corresponding elastic plate unstable under the
given loading.

This approach resembles somewhatthe use of the secant modulus in
the analysis of plastic buckling and is difficult to justify on purely
theoretical grounds. The main advantage is that it conceptually reduces
the time-dependent behavior to a purely elastic, time-independent response
without introducing any newbuckling or failure criteria. Therefore, a
high degree of idealization is embodied, and the physical reasonableness
can be tested only by comparison with experimental results; but its merits
for the aircraft structural engineer are obvious.

Another feature of the present approach, which contrasts it to the
other methods, consists in the fact that no initial imperfections have to
be assumed. This is of somesignificance_ since experimental results
(ref. 3) show that initial deviations from flatness do not influence
appreciably the lifetime of compressedplates.

The basic equations governing the behavior of viscoelastic plates
in compression are derived and discussed in the first section of this
report. The second section establishes the expressions relating the
applied compressive force to the lifetime of the plate.

In the third and last section a quantitative comparison of the theo-
retical predictions and experimental results is carried out. The material
constants necessary for such a comparison were extracted from a completely
different source (ref. 4) than that giving the experimental results of
the lifetime of plates (ref. 3).

Becauseof the scarcity of information on material properties and
lifetimes and because of the large scatter to be expected in such experi-
ments, this first quantitative comparison, which gives the correct order
of magnitude and the correct dependenceon the parameters, maybe con-
sidered as promising.
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SYMBOLS

edge lengths of plate

elastic flexural rigidity of plate

upper and lower flexural rigidity of plate, respectively

Young's modulus

uniform edge thrust per unit length of plate

elastic critical load

upper and lower critical load, respectively

shear modulus

plate thickness

bulk modulus

numerical factor, buckling value

plate moments defined by equation (2)

linear differential operators

time

lifetime (critical time)

deflection of plate

rectangular Cartesian coordinates

Poisson's ratio

strain deviator

strain components

coefficient of viscosity introduced in figure 2(b)
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_x, _y, Cz,_xy

_g

_a

Subscripts :

cr

e

h

z

r

u

moduli of rigidity introduced in figure 2(b)

stress deviator

stress components

time of relaxation.of stress under constant strain

time of relaxation of strain under constant stress

critical

elastic plate

upper

lower

relaxed (modulus)

unrelaxed (modulus)

BASIC EQUATIONS

A flat_ rectangular plate with edge lengths a and b and thickness

h is referred to the system of coordinates shown in figure I and is

loaded along the edges x = 0_a by a uniformly distributed (compressive)

force per unit length F. All four edges are simply supported.

The stress equation of equilibrium in the transverse direction

is (e.g., see ref. 5)

b2Mx+ 2 _v +_-_ r b2w (1)
_x 2 2 _y2 _x 2

where the moments are defined in the usual way:

= _xz dz; My= _yz dz; Mxy = _xyZ dz
,S-hi2 ,/-hi2



and w is the deflection. In the present linearized analysis, the

force F is not related to w. To express equilibrium (eq. (i)) in

terms of one single unknown (deflection w), the stress-strain relations

of the material and the geometrical strain-displacement relations have

to be specified.

In establishing the relations between the moments Mx, My, Mxy

and the deflection w, assume that the plate material is linearly visco-

elastic. In the absence of volume viscosity_ the stress-strain relations

for such a material may be written down in the form (see ref. 6):

P_d = 2QCd

E (_ + CYqx + ay + _z - i - 2v x

(3)

where ad is the stress deviator, _d is the strain deviator, ax, _y,

and a z are the normal components of stress, and gx_ Cy_ and Cz are

the elongations. The quantity E/3(I - 2v) is the bulk modulus K, and

P and Q are the linear differential operators in time:

bm
p = a0 + al _-_ + . + a

m 8t m

Q = b0 + bl _t +
_n

. +bn_
_t n

(4)

The stress-strain relations (eq. (5)) involving normal stresses and

strains may be written out in scalar form as

x]
= - 2v3 3 e+ 2Q_

Pay = l - 2v 3 3 e + 2Q¢

Paz = [_ E2v P3 32 Q] e + 2Q_zJ

(s)



By eliminating _z in the preceding set and neglecting az,

P 1 - 2_ 3 + 3 C_x = - 2_ 3 + _ 2Q_x + - 2v 3 5

+ _ ZQ_y + - 2_, Y -

(6)

The procedure is analogous to the treatment of the elongation _z and

the stress component d in case of elastic plate materials (e.g., see
ref. 7). z

By assuming, further, the stress-displacement relations to be those

of the classical linear plate theory, namely

_2w' 6y
_x = - z _x2,

_2w. _2w

zLIU2'Byrxy = - z_ (v)

and by noting that in shear

P_xy = _xy

the moment-deflection relations can be found by combining equations (2),

(3), and (7):

(s)

then the equilibrium condition, equation (i) in terms of w only, is

obtained by substituting relations (8) into equation (i):

- 2"_ 3 + _h3V4w + 3P - 2v 3 +'3 F - 0 (9)
c_x2



To treat any particular initial-value problem, the specific form of

the operators P and Q has to be prescribed. In case of the so-called

four-parameter model (fig. 2(a)), which was discussed and applied, for

example, by Glauz and Lee (ref. 8), these operators are of the form

p=--+ + _--- + +

_i _ _2

_ _ _2

Q = _i _ + _l _t 2

(io)

-- u

where kl' _i' _2, and 02 are the four constants of the model.

Since in the case of a four-parameter model the operators P and

Q are of second order, considerable complications are introduced in

solving the equilibrium equation (9) together with the appropriate initial

conditions. Since, in the process considered presently, no unloading

takes place, the omission of the element representing unrecoverable flow

(02 in fig. 2(a)) appeared to be justified. The model was thus reduced

to a three-parameter one, as shown in figure 2(b). This model was dis-

cussed extensively by Zener (ref. 9) and is referred to as the one

characterizing a standard linear solid.

The operators P and Q are now of first order:

P=I+ _-_

(ii)

Q = k2 (i + i +i_t)JklIz2

Several other quantities, defined in terms of the model constants

_i' _2' and q may be introduced for convenience and better physical

insight. In particular_ it is useful to know the time-dependence of E

and v in terms of the shear modulus G. The quantity _g = q/kl is

the time of relaxation of stress under constant strain, _ = B/_I + _/_2

is the time of relaxation under constant stress, Gr = k2 is the relaxed

shear modulus, and Gu = _i + _2 is the unrelaxed shear modulus. It

follows that

Gu T_



8

By introducing Eu
Young's modulus, Ku
laxed bulk modulus, the absence of volume viscosity requires that

But

Since (ref. 9)

then

as the unrelaxed Young's modulus_ Er as the relaxed
as the unrelaxed bulk modulus_ and Kr as the re-

K i E(t) _G(Ft,I= _ 3G(t) t) -

Ku= Kr= K

I Er Gr i Eu Gu

3 3G r - Er 3 3G u - Eu

Eu = 2(1 + _) 0u

(i3)

(14)

Evidently

since, from equation (13),

3 i i- 2v

Er Gr Eu

Er _ 2(i + v) Gr

3E u G(t)

E(t) = (i- 2v) G(t) + E u

Some authors (refs. I0 and ii) prefer to use the form

E(t) = 2 [I + v(t)] Gu

By comparison with equation (16), v (t) must be

(2 + 5v) G(t) - Eu

(t)- (i- 2v) G(t) + Eu

It may be noted that, while v(O) = V, v(.) _ 1/2

model (_2 = 0). Further, in the expression

_x + _y + _z = 3K(_x + _y + _z)

(is)

(16)

(17)

(18)

except for a Maxwell

(19)



the value

constant.

2(1 + v)ou

3K may be conveniently replaced by (i - 2v) , which is a

The quantity v has here its initial value.

Even though for a three-parameter model the operators P and Q

are of first order, equation (9) on the deflection w will be of second
order.

An attempt could be made to lower this order while the same basic

model is still being considered for the stress-strain relations. This,

in fact, can be done by extending the elastic stress-strain relations for

a plate directly to the viscoelastic ones without ever considering, as

was done before, the three-dimensional stress-strain relations. The

physical significance of this latter procedure, as contrasted to the

previous one, will be discussed at the end of the next section.

In the present case of a three-parameter model, therefore,

i _t) 2Gr

+ _ ay - 1 - v + mO (_Y + _aX) (2o)

This leads to the equation

+ "_ V4w + + w e F _2w - 0
12 i - v _x 2

(21)

or

h 3 2Q V4w + YF _2w
7x2=°

which replaces equation (9) and is of the first order in time.

CONCEPT OF ELASTIC BUCKLING APPLIED TO VISCOELASTIC PLATES

The external force F is assumed to act in the form of a step func-

tion and keeps its constant value after the beginning of loading at a
time t = 0.
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Oneof the features of the linearized elastic stability analysis is
that no relation is sought between the force F and the deflection w
(ref. 12 contains a careful and detailed analysis of the stability
phenomenon).

In the case of an elastic plate, the critical force Fe
to be (ref. 12)

De_2
Fe - b2 k

is found

where De is the flexural rigidity of the elastic plate

Geh3
De " 6(i -

and Ge is the shear modulus of the elastic plate; k is a numerical

factor, the buckling value, the magnitude of which depends on the ratio

a/b.

In the case of a viscoelastic plate characterized by the three-

parameter model (fig. 3), the following statement can be made: Since the

plate is assumed to be perfectly flat, the constant force F produces

only constant compressive stresses. Further, at the instant of loading

the viscosity element is as yet ineffective, and the rigidity is governed

by the unrelaxed modulus Gu. On the other hand, if the force F is

permitted to act for an infinitely long time, the spring _2 becomes in-

effective and the rigidity is governed by the relaxed modulus Gr.

Thus an upper critical load Fh, under which the plate buckles in-

stantaneously, and a lower critical load FZ, under which the plate buck-

les after an infinite time, may be defined. Hence, for any load F > Fh

the plate buckles instantaneously; for F < FZ the plate never buckles;

and for FZ < F < Fh the plate buckles after a finite period of time_

which may be referred to as the lifetime or critical time tcr.

The expressions for Fh, F_, and tcr may be determined readily.

To calculate Fh, let P = i and Q = Gu, and obtain from equation (9)

Dh_2

b2 k



ii

where

(_.6)

To find Fd, let P = I and Q = Gr_ and obtain similarly

k (27)

where

2(l + j% i]

DE= L (I - 2v)G r + j Grh3

[2(1 + _)% .1
S L_l _ 2v)G r +

To calculate the critical time tcr associated with a load

proceed as follows: Since the (constant) force F produces constant

stresses in the perfectly flat plate, the stress-strain relation (eqs.

(20)) takes the form

T = Gr (i + xa _0 Y

During the interval of time

decrease from Gu to Gr-

(29)

Since3 at

(2s)

FI< F<F h ,

(29)

0 < t < _, the shear modulus G(t) will

t = O_ x = GuY , then from equation

G(t) = Gr et/_O

Gu Gu t/T o Gr
e + -- -

Gu

(3o)

The load F as a function of critical time is therefore (again with the

use of eq. (9)):

2(1 + v) + (1 - 2v)
F(tcr ) D(t) Gu

Fh - Dh == G(t) 2(1 - v) G(t)Gu (_S1)

2(1 + _) + 4(1-2_) %
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A plot of G(t)/G u against a dimensionless time t/_g is presented

in figure 3. Poisson's ratio was taken as v = 0.5. One curve is for

Gr/G u = 0.9 (low viscosity) and the other for Gr/G u = 0.i (high

viscosity). Figure 4: shows a plot of F(tcr)/F h against t/_a, again

for Gr/G u = 0.9 and Gr/G u = 0.i.

With the simpler equation (22), the same relation (30) is obtained

for G(t)/Gu_ but a different one is obtained for F(tcr)/Fh, namely

F(t) D(t)= a(t) (3_)
Fh Dh Gu

which now replaces equation (31). Thus, with the simpler equation (30),

the curve F(t)/F h is identical to G(t)/Gu, whatever the value of

Gr/G u •

It may be of interest to establish the physical meaning of stress-

strain relations (20) as contrasted to stress-strain relations (3). A

consequence of the former is equation (31), while a consequence of the

latter is equation (32). Thus, in order to pass from equation (31) to

equation (32),

[2(i + v) + (i - 2v) GG-_ut] 2(1 - _) - i (33)

2(1+ _) + 4(i- 2_)G(t)
Gu

Introducing into this expression the bulk modulus K gives

K: 3(Z- 2_): 3(1- 2_)% (34)

and solving for K gives

[I 1 + _) G(t)K = 1 - 2_)
(35)

or

K(t): G(t) (36)
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that is, the bulk modulus changes in proportion to the shear modulus.

Thus, while equations (5) express absence of volume viscosity

(K = constant), equations (20) describe a material with both volume and

shear viscosity.

COMPARISON OF THEORETICAL PREDICTIONS

AND EXPERIMENTAL RESULTS

In order to predict a numerical value for the critical time_ three

material constants corresponding to the three elements of the model must

be known. These constants may be obtained from a creep test.

Figure 5 shows an approximate reproduction of a curve from reference

Z_ which gives the total deformation in percent against time in hours

for a 2024-T5 aluminum sheet at 450 ° F subjected to a compressive constant

stress of 26,000 pounds per square inch. From this plot the unrelaxed

Young's modulus Eu is readily obtained by dividing the stress by the

instantaneous strain:

26,00_____06 SOxl06 psi
Eu = 4xlO_ 3 = .

(37)

If the plot is extrapolated by assuming that the total deformation will

reach 1.6 percent for very large times, the relaxed Young's modulus is

obtained:

E - 26,000 = 1.60xlO 6 psi (38)
r 1.6xi0-2

When Poisson's ratio v is 0.5, the unrelaxed shear modulus Gu is
calculated to be

E u

Gu = 2(1 + v) = 2"5xi06 psi (39)

The reciprocal of the relaxed shear modulus Gr, by formula (15), is

I 3

Gr Er
(i- 2_) = 1.8×10_ 6 psi- 1 (40)

Thus,

G u

G
r
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To find the third constant, use the special form of stress-strain

relations (20) for uniaxial constant compression, namelyz

= 2Gr(l + v) _ + 2Gr(l + v) _ (42)

and solve for _

By taking from the curve of figure 5 several pairs of values of s and

and by using the values of _ and Gr just given_ an average _

value of 30 hours may be obtained. The stress _ that causes failure

can now be determined as a function of the critical time (or lifetime).

To find the upper critical stress (_cr)u = Fh/h' use formula (25) with

k = 4, the buckling value for a long, simply supported plate. Substitu-

tion of the numerical values yields

2

= 23.5 h-×106 psi (44)
(qcr)h b 2

The ratio of this critical upper value to the critical value corresponding

to a lifetime of, say, • is on the basis of the preceding theory the

same as the ratio of G(_)/G u given by equation (30). Figure 6 shows a

plot of the critical stress against lifetime for four thickness-to-width

ratios b/h of 20, 30_ 45, and 60.

These purely theoretical lifetime curves can be compared with ex-

perimental results presented by Mathauser and Deveikis in reference 3,

which are also shown in figure 6. Even though the quantitative discrep-

ancy between the predicted and experimental results is in general fairly

large, the theory predicts more than merely an order of magnitude and

exhibits the proper dependence on time and on thickness-to-width ratio.

Because of the scarcity of information on material properties of

aluminum alloys subjected to compression at high temperatures and in-

formation on creep lifetime of plates, this first numerical comparison

of theoretical aud experimental results can be regarded as satisfactory

and promising.

Performing the comparison on a wider scale did not appear possible,

because only for the 2024-T3 aluminum-alloy plates at AS0 ° F were, to

the authors' knowledge, both material constants and creep lifetimes of

plates in compression determined experimentally.
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CONCLUDINGREMARKS

In conclusion, it should be emphasizedthat the present report con-
tains a highly simplified and idealized analysis, since the influence of
metallurgical changes, nonlinearities, time-dependent loads, and so forth_
were not taken into account.

However, the fact that creep analysis is bound to be a highly in-
exact endeavor should be noted. The large amount of scatter to be ex-
pected maybe seen, for example, in reference 13, where it is shownthat
varying the temperature ±i0 ° F every 7 minutes produced creep rates six
times as large as those produced in a steady ten_erature test at 1800° F.
Further_ a 15-percent stress variation may change a column lifetime by a
factor of i0.

Thus it follows that, from a practical point of view_ all that can
be expected from a creep analysis is merely an order of magnitude.
Precisely for this reason, any attempt to refine the approach by including
various effects has to be considered with caution.

Columbia University_
NewYork, N. Y._ March 17_ 1957
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b

Figure i. - Compressed plate.

_2

(o) Four-porometer model.

_2

1

1
(b) Three-parometer model.

Figure 2. - Viscoelastic models.
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Experimental results

Theoretical predictions

60

0 I I I I I I1 1 I I I III
I 5 I0 50 I00

Critical time, tcr , hr

Figure 6. - Comparison of experimental and predicted creep

lifetimes for ZOg4-T5 alumi_:um-alloy plates. Temperature_

450 ° F.
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